First Example of a 1,2,4-Triphosphabuta-1,3-diene Complex: Synthesis and Crystal and Molecular Structure of $[Co(\eta^5-C_2R_2P_3)(\eta^4-C_2R_2HP_3)]$ (R = Bu^t)

Rainer Bartsch, Peter B. Hitchcock, and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, U.K.

Treatment of CoCl₂ with Li(C₂R₂P₃) (R = Bu^t) in 1,2-dimethoxyethane yields the complex [Co(η^{5} -C₂R₂P₃)(η^{4} -C₂R₂HP₃)] containing a ligated 1,2,4-triphosphacyclopenta-1,3-diene ring system.

There is considerable current interest in the ligating behaviour of unsaturated organophosphorus ligands.¹ It has become increasingly apparent that formal replacement of a CH fragment by P or a CH₂ fragment by PR in organic compounds can lead to a variety of novel unsaturated organophosphorus compounds, many of which form complexes with transition metals. During the past few years the structural types (a)—(h) have been established (ML_n = transition metal and attendant ligands).^{2–14}

Very recently Mathey *et al.*¹⁵ described the first example of an η^{4} -ligated 1-phosphabutadiene system (i) {ML_n = [W(CO)₄]} as its [W(CO)₅] adduct, formed *via* a coupling reaction of a vinyl carbene metal complex with the transient phosphinidene compound [W(CO)₅PPh]. We now describe the first example of a 1,2,4-triphosphabutadiene metal complex of type (j), which further extends the range of ligated unsaturated phosphorus ligands.

Treatment of $\text{Li}(C_2R_2\bar{P}_3)$ (R = Bu^t) in 1,2-dimethoxyethane with CoCl₂ gave a low yield (*ca.* 5%) of the red diamagnetic complex [Co(η^5 -C₂R₂P₃)(η^4 -C₂R₂HP₃)] (1).† The ³¹P{¹H} n.m.r. spectrum (Figure 1) exhibits two widely spaced ABX patterns for the two sets of three nonequivalent phosphorus nuclei in the two rings which have been fully analysed.‡ A single crystal X-ray structural determination reveals the molecular structure shown in Figure 2, indicating that the complex should be formulated as an (η^{5-1} ,3,5triphosphacyclopentadienyl)(η^{4-1} ,2,4-triphosphacyclopentadiene)cobalt derivative.§

The complex (1) may arise from the intermediate paramagnetic $[Co(\eta^5-C_2But_2P_3)_2]$ precursor by H abstraction from the solvent, since the yield is increased when the reaction is carried out in the presence of cyclopentadiene.

The η^{5} -1,3,5-triphosphacyclopentadienyl ring is planar as expected and the bond distances and bond angles are similar to those previously described for $[Fe(\eta^{5}-C_{2}Bu^{t}_{2}P_{3})_{2}]^{14}$ and $[Fe(\eta^{5}-C_{2}Bu^{t}_{2}P_{3})(\eta^{5}-C_{5}H_{5})W(CO)_{5}]$.¹⁶ The PPCP framework

‡ Selected spectroscopic data: ³¹P δ (rel. H₃PO₄) P(1) +131.2, P(2) +109.5, P(3) +93.1, P(4) +0.2, P(5) -20.1, P(6) -64.7; ¹J_{P(1)P(2)} 419.7, ²J_{P(1)P(3)} 41.6, ²J_{P(2)P(3)} 40.2, ¹J_{P(4)P(6)} 360.6, ²J_{P(5)P(6)} 24.5, ²J_{P(4)P(6)} 24.5, ²J_{P(2)P(4)} 39, ²J_{P(3)P(6)} 24.2 Hz; ¹H δ 1.50 (Bu⁴), 1.36 (Bu⁴), 1.28 (Bu⁴), 1.21 (Bu⁴), and 0.8 (br., CH).

§ Crystal data: C₂₀H₃₇CoP₆, M = 522.3, triclinic, space group $P\overline{1}$, a = 10.489(10), b = 10.631(10), c = 12.573(8) Å $\alpha = 72.25(9)$, $\beta = 89.94(8)$, $\gamma = 79.65(9)^{\circ}$, U = 1311.4 Å³, Z = 2, $D_c = 1.32$ g cm⁻³, monochromated Mo- K_{α} radiation, $\lambda = 0.71069$ Å, $\mu = 10.2$ cm⁻¹. The structure was solved by routine heavy-atom methods and refined by full-matrix least-squares with non-hydrogen atoms anisotropic using 2953 reflections with $I > \sigma(I)$ measured with an Enraf-Nonius CAD4 difference map and refined isotropically. The final residuals were R = 0.088, R' = 0.107, with 248 parameters refined. The rather high R factor is a consequence of the weak diffraction from the crystal. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

of the η^4 -ligated 1,2,4-triphosphabutadiene fragment of the (C₂Bu₂HP₃) ring is also planar, and the C-P and P-P bond lengths (summarised in Figure 3) lie in the expected range for this unsaturated system.

Interestingly the H atom attached to the unligated carbon atom of the η^4 -(C₂Bu^t₂HP₃) ring occupies an *endo*-position, but in contrast to analogous cyclopentadienylcyclopentadienecobalt complexes $[Co(\eta^5-C_5H_5)(\eta^4-C_5H_5R)]^{17,18}$ it has

Figure 1. ${}^{31}P{}^{1}H$ N.m.r. spectrum of the complex (1).

 $⁺ m/z 522 (M^+, 40\%)$ and $465 \{ [Co(C_2Bu'_2P_3)(C_2Bu'HP_3)]^+, 100\% \}$.

Figure 2. Molecular structure of complex (1).

Figure 3. Bond lengths for the PPCP system in the complex (1).

not yet been possible to generate the $[Co(\eta^5-C_2Bu^t_2P_3)_2]^+$ cation {which would be isoelectronic with $[Fe(\eta^5-C_2Bu^t_2P_3)_2]$ }

by treatment of (1) with either CCl₄ or $Ph_3C^+BF_4^-$, presumably because of steric factors.

We thank the S.E.R.C. for their continuing support for this work.

Received, 22nd February 1988; Com. 8/00665B

References

- 1 J. F. Nixon, Chem. Rev., in the press.
- T. A. van der Knaap, L. W. Jenneskens, H. J. Meeuwissen, and F. Bickelhaupt, J. Organomet. Chem., 1983, 254, C33; A. H. Cowley, R. A. Jones, and A. L. J. Stewart, J. Am. Chem. Soc., 1983, 105, 3737; A. H. Cowley, R. A. Jones, J. G. Lasch, N. C. Norman, C. A. Stewart, A. L. Stuart, J. L. Atwood, W. E. Hunter, and H. M. Zhang, *ibid.*, 1984, 106, 7015; S. I. Al-Resayes, S. I. Klein, H. W. Kroto, M. F. Meidine, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1983, 930; H. Werner, W. Paul, and R. Zolk, Angew. Chem., Int. Ed. Engl., 1984, 23, 626; R. Appel, C. Casser, and F. Knoch, J. Organomet. Chem., 1985, 293, 213; B. Deschamps and F. Mathey, J. Chem. Soc., Chem. Commun., 1985, 1010.
- 3 R. Appel, F. Knoll, and I. Ruppert, Angew. Chem., Int. Ed. Engl., 1981, 20, 731; O. J. Scherer, ibid., 1985, 24, 924.
- 4 P. B. Hitchcock, M. J. Maah, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 658, and refs. cited therein.
- 5 P. B. Hitchcock, M. J. Maah, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 737.
- 6 P. Binger, R. Milczarek, R. Mynott, M. Regitz, and W. Rösch, Angew. Chem., Int. Ed. Engl., 1986, 25, 644.
- 7 F. Mercier, J. Fischer, and F. Mathey, Angew. Chem., Int. Ed. Engl., 1986, 25, 357.
- 8 R. Appel, W. Schuhn, and F. Knoch, Angew. Chem., Int. Ed. Engl., 1985, 24, 420.
- 9 C. A. Akpan, M. F. Meidine, J. F. Nixon, M. Yoshifuji, K. Toyota, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1985, 946.
- 10 J. F. Nixon, Phosphorus Sulfur, 1987, 30, 471.
- 11 M. Yoshifuji, K. Toyota, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1984, 689.
- 12 M. Yoshifuji, K. Shibayama, T. Hashida, K. Toyota, T. Niitsu, I. Matsuda, T. Sato, and N. Inamoto, J. Organomet. Chem., 1986, 311, C63.
- 13 C. A. Akpan, P. B. Hitchcock, J. F. Nixon, M. Yoshifuji, T. Niitsu and N. Inamoto, J. Organomet. Chem., 1988, 338, C35.
- 14 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
- 15 N. H. Tran Huy, J. Fischer, and F. Mathey, J. Am. Chem. Soc., 1987, 109, 3475.
- 16 R. Bartsch, P. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 340, C37.
- 17 I. U. Khand, P. L. Pauson, and W. E. Watts, J. Chem. Soc. C., 1969, 2024; P. L. Pauson, J. Organomet. Chem., 1980, 200, 207.
- 18 S. G. Davies, M. L. H. Green, and D. M. P. Mingos, *Tetrahedron*, 1978, 24, 3047.